# The Jacobi Constant When dealing with the [Circular Restricted Three-Body Problem](cr3bp.md) there exists a time-invariant integral of motion known as the **Jacobian Integral of Motion**. To get this integral of motion, multiple the Circular Restricted Three-Body Problem equations of motion, Equation {eq}`cr3bp_eom_simp`, by the velocity vector: :::{math} :label: \begin{align*} \dot{x}\left(\ddot{x} - 2n\dot{y}\right) &= \dot{x}\left(\frac{\partial{V}}{\partial{x}}\right) \\ \dot{y}\left(\ddot{y} + 2n\dot{x}\right) &= \dot{y}\left(\frac{\partial{V}}{\partial{y}}\right) \\ \dot{z}\left(\ddot{z} \right) &= \dot{z}\left(\frac{\partial{V}}{\partial{z}}\right) \end{align*} ::: :::{math} \dot{x}\ddot{x} + \dot{y}\ddot{y} + \dot{z}\ddot{z} = \frac{\partial{V}}{\partial{x}}\dot{x} + \frac{\partial{V}}{\partial{y}}\dot{y} + \frac{\partial{V}}{\partial{z}}\dot{z} ::: and then integrate both ends :::{math} :label: \frac{1}{2} \frac{d}{dt} \left[ \dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right] = \frac{d}{dt} V\left(x,y,z \right) ::: :::{math} :label: \frac{d}{dt} \left[ \frac{1}{2}\left( \dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - V \right] = 0 ::: This yields the constant **Jacobi Integral (J)**: :::{math} :label: jacobi_constant \frac{1}{2}\left( \dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) - V\left(x,y,z \right) = J ::: # Non-Dimensional Jacobi Constant At the same time there exists a Non-Dimensional Jacobi Constant that follows the same formation as the [Non-Dimensional Circular Restricted Three-Body Problem](cr3bp.md#non-dimensional-circular-restricted-three-body-problem). Consider the **Jacobian Integral** {eq}`jacobi_constant` with applied normalized potentials $\tilde{V}$ {eq}`cr3bp_V`, and $\tilde{U}$ {eq}`cr3bp_U`. This results in: :::{math} :label: jacobi_constant_norm \frac{1}{2}\left( {\dot{x}^*}^2 + {\dot{y}^*}^2 + {\dot{z}^*}^2 \right) - \tilde{V}\left(x^*,y^*,z^*\right) = \tilde{J} ::: which is still a constant.